Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Arch Virol ; 168(7): 182, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37322175

RESUMO

Viruses of four families of arthropod-specific, large dsDNA viruses (the nuclear arthropod large DNA viruses, or NALDVs) possess homologs of genes encoding conserved components involved in the baculovirus primary infection mechanism. The presence of such homologs encoding per os infectivity factors (pif genes), along with their absence from other viruses and the occurrence of other shared characteristics, suggests a common origin for the viruses of these families. Therefore, the class Naldaviricetes was recently established, accommodating these four families. In addition, within this class, the ICTV approved the creation of the order Lefavirales for three of these families, whose members carry homologs of the baculovirus genes that code for components of the viral RNA polymerase, which is responsible for late gene expression. We further established a system for the binomial naming of all virus species in the order Lefavirales, in accordance with a decision by the ICTV in 2019 to move towards a standardized nomenclature for all virus species. The binomial species names for members of the order Lefavirales consist of the name of the genus to which the species belongs (e.g., Alphabaculovirus), followed by a single epithet that refers to the host species from which the virus was originally isolated. The common names of viruses and the abbreviations thereof will not change, as the format of virus names lies outside the remit of the ICTV.


Assuntos
Artrópodes , Granulovirus , Vírus , Animais , Artrópodes/genética , Vírus de DNA/genética , Baculoviridae , Especificidade de Hospedeiro
3.
Science ; 373(6554): 535-541, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326235

RESUMO

Interkingdom competition occurs between hymenopteran parasitoids and insect viruses sharing the same insect hosts. It has been assumed that parasitoid larvae die with the death of the infected host or as result of competition for host resources. Here we describe a gene family, parasitoid killing factor (pkf), that encodes proteins toxic to parasitoids of the Microgastrinae group and determines parasitism success. Pkfs are found in several entomopathogenic DNA virus families and in some lepidopteran genomes. We provide evidence of equivalent and specific toxicity against endoparasites for PKFs found in entomopoxvirus, ascovirus, baculovirus, and Lepidoptera through a mechanism that elicits apoptosis in the cells of susceptible parasitoids. This highlights the evolutionary arms race between parasitoids, viruses, and their insect hosts.


Assuntos
Entomopoxvirinae/fisiologia , Proteínas de Insetos/toxicidade , Lepidópteros/parasitologia , Lepidópteros/virologia , Proteínas Virais/toxicidade , Vespas/fisiologia , Animais , Apoptose , Evolução Biológica , Transferência Genética Horizontal , Genoma de Inseto , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Vírus de Insetos/fisiologia , Larva/genética , Larva/parasitologia , Larva/virologia , Lepidópteros/genética , Lepidópteros/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/parasitologia , Spodoptera/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vespas/crescimento & desenvolvimento
4.
J Gen Virol ; 101(5): 553-564, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182204

RESUMO

Oral infection of caterpillars by baculoviruses is initiated by occlusion-derived virus particles (ODVs) that infect midgut epithelium cells. The ODV envelope therefore contains at least ten different proteins, which are called per os infectivity factors (PIFs). Nine of these PIFs form the so-called ODV entry complex that consists of a stable core formed by PIF1, 2, 3 and 4, to which the other PIFs [PIF0, 6, 7, 8 and 9 (ac108)] bind with lower affinity. PIF1 and 2 are not only essential for complex formation, but also mediate ODV-binding to the epithelial brush border, probably via the C-termini. To study the involvement of these PIFs during midgut infection in greater detail, we assessed the oral infectivity and the ability to form the complex of a series of PIF1 and PIF2 C-terminal truncation mutants of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), which were constructed in this study. Limited truncation of either PIF1 or 2 already severely impaired the ODV oral infectivity, but did not affect the formation of the core complex. However, the entry complex as a whole was not assembled in these mutants as PIF0 and 8 failed to bind to the core. This suggests that the interactions between the core and the loosely associated PIFs are important for the ODV infectivity and that complex formation complicates the determination of the exact roles of PIF1 and 2 during midgut infection. We also showed that the presence of PIF0, 6 and the ZF-domain of PIF8 are crucial for complex formation.


Assuntos
Baculoviridae/genética , DNA Helicases/genética , Nucleopoliedrovírus/genética , Fatores de Virulência/genética , Animais , Linhagem Celular , Sistema Digestório/virologia , Células Epiteliais/virologia , Células Sf9 , Proteínas do Envelope Viral/genética , Vírion/genética
5.
J Gen Virol ; 101(1): 3-4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935180

RESUMO

Members of the family Nudiviridae are large dsDNA viruses with distinctive rod-shaped nucleocapsids and circular genomes of 96-232 kbp. Nudiviruses have been identified from a diverse range of insects and crustaceans and are closely related to baculoviruses. This is a summary of the International Committee on Taxonomy of Viruses Report on the taxonomy of the family Nudiviridae, which is available at ictv.global/report/nudiviridae.


Assuntos
Nudiviridae/classificação , Nudiviridae/genética , Animais , Baculoviridae/genética , Crustáceos/virologia , Genoma Viral/genética , Insetos/virologia , Vírion/genética
6.
Insect Sci ; 26(3): 424-440, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29064633

RESUMO

The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinformatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel electrophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV, of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinformatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.


Assuntos
Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Mariposas/metabolismo , Proteoma , Animais , Larva/metabolismo
7.
Virus Genes ; 55(1): 104-116, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30430308

RESUMO

The Mythimna unipuncta nucleopolyhedrovirus isolate KY310 (MyunNPV-KY310) is an alphabaculovirus isolated from a true armyworm (Mythimna unipuncta) population in Kentucky, USA. Occlusion bodies of this virus were examined by electron microscopy and the genome sequence was determined by 454 pyrosequencing. MyunNPV-KY310 occlusion bodies consisted of irregular polyhedra measuring 0.8-1.8 µm in diameter and containing multiple virions, with one to six nucleocapsids per virion. The genome sequence was determined to be 156,647 bp with a nucleotide distribution of 43.9% G+C. 152 ORFs and six homologous repeat (hr) regions were annotated for the sequence, including the 38 core genes of family Baculoviridae and an additional group of 26 conserved alphabaculovirus genes. BLAST queries and phylogenetic inference confirmed that MyunNPV-KY310 is most closely related to the alphabaculovirus Leucania separata nucleopolyhedrovirus isolate AH1, which infects Mythimna separata. In contrast, MyunNPV-KY310 did not exhibit a close relationship with Mythimna unipuncta nucleopolyhedrovirus isolate #7, an alphabaculovirus from the same host species. MyunNPV-KY310 lacks the gp64 envelope glycoprotein, which is a characteristic of group II alphabaculoviruses. However, this virus and five other alphabaculoviruses lacking gp64 are placed outside the group I and group II clades in core gene phylogenies, further demonstrating that viruses of genus Alphabaculovirus do not occur in two monophyletic clades. Potential instances of MyunNPV-KY310 ORFs arising by horizontal transfer were detected. Although there are now genome sequences of four different baculoviruses from M. unipuncta, comparison of their genome sequences provides little insight into the genetic basis for their host specificity.


Assuntos
Baculoviridae/genética , Genoma Viral , Mariposas/virologia , Sequenciamento Completo do Genoma , Sequência de Aminoácidos , Animais , Baculoviridae/classificação , Baculoviridae/ultraestrutura , Sequência de Bases , Genes Virais , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Vírion/ultraestrutura
8.
Annu Rev Virol ; 5(1): 113-139, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004832

RESUMO

Baculoviruses are large DNA viruses of insects that are highly pathogenic in many hosts. In the infection cycle, baculoviruses produce two types of virions. These virion phenotypes are physically and functionally distinct, and each serves a critical role in the biology of the virus. One phenotype, the occlusion-derived virus (ODV), is occluded within a crystallized protein that facilitates oral infection of the host. A large complex of at least nine ODV envelope proteins called per os infectivity factors are critically important for ODV infection of insect midgut epithelial cells. Viral egress from midgut cells is by budding to produce a second virus phenotype, the budded virus (BV). BV binds, enters, and replicates in most other tissues of the host insect. Cell recognition and entry by BV are mediated by a single major envelope glycoprotein: GP64 in some baculoviruses and F in others. Entry and egress by the two virion phenotypes occur by dramatically different mechanisms and reflect a life cycle in which ODV is specifically adapted for oral infection while BV mediates dissemination of the infection within the animal.


Assuntos
Baculoviridae/fisiologia , Interações Hospedeiro-Patógeno , Insetos/virologia , Internalização do Vírus , Liberação de Vírus , Animais , Proteínas Virais/metabolismo
9.
J Gen Virol ; 99(9): 1185-1186, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947603

RESUMO

The family Baculoviridae comprises large viruses with circular dsDNA genomes ranging from 80 to 180 kbp. The virions consist of enveloped, rod-shaped nucleocapsids and are embedded in distinctive occlusion bodies measuring 0.15-5 µm. The occlusion bodies consist of a matrix composed of a single viral protein expressed at high levels during infection. Members of this family infect exclusively larvae of the insect orders Lepidoptera, Hymenoptera and Diptera. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Baculoviridae, which is available at www.ictv.global/report/baculoviridae.


Assuntos
Baculoviridae/classificação , Genoma Viral , Insetos/virologia , Animais , Baculoviridae/genética , Filogenia , Proteínas Virais , Replicação Viral
10.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142135

RESUMO

During the infection cycle of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), two forms of virions are produced, budded virus (BV) and occlusion-derived virus (ODV). Nucleocapsids that form BV have to egress from the nucleus, whereas nucleocapsids that form ODV remain inside the nucleus. The molecular mechanism that determines whether nucleocapsids remain inside or egress from the nucleus is unknown. AC141 (a predicted E3 ubiquitin ligase) and viral ubiquitin (vUbi) have both been shown to be required for efficient BV production. In this study, it was hypothesized that vUbi interacts with AC141, and in addition, that this interaction was required for BV production. Deletion of both ac141 and vubi restricted viral infection to a single cell, and BV production was completely eliminated. AC141 was ubiquitinated by either vUbi or cellular Ubi, and this interaction was required for optimal BV production. Nucleocapsids in BV, but not ODV, were shown to be specifically ubiquitinated by vUbi, including a 100-kDa protein, as well as high-molecular-weight conjugates. The viral ubiquitinated 100-kDa BV-specific nucleocapsid protein was identified as AC66, which is known to be required for BV production and was shown by coimmunoprecipitation and mass spectrometry to interact with AC141. Confocal microscopy also showed that AC141, AC66, and vUbi interact at the nuclear periphery. These results suggest that ubiquitination of nucleocapsid proteins by vUbi functions as a signal to determine if a nucleocapsid will egress from the nucleus and form BV or remain in the nucleus to form ODV.IMPORTANCE Baculoviruses produce two types of virions called occlusion-derived virus (ODV) and budded virus (BV). ODVs are required for oral infection, whereas BV enables the systemic spread of virus to all host tissues, which is critical for killing insects. One of the important steps for BV production is the export of nucleocapsids out of the nucleus. This study investigated the molecular mechanisms that enable the selection of nucleocapsids for nuclear export instead of being retained within the nucleus, where they would become ODV. Our data show that ubiquitination, a universal cellular process, specifically tags nucleocapsids of BV, but not those found in ODV, using a virus-encoded ubiquitin (vUbi). Therefore, ubiquitination may be the molecular signal that determines if a nucleocapsid is destined to form a BV, thus ensuring lethal infection of the host.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Espectrometria de Massas , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/virologia , Montagem de Vírus , Liberação de Vírus
11.
Virus Genes ; 54(2): 297-310, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29204787

RESUMO

A baculovirus isolate from a USDA Forest Service collection was characterized by electron microscopy and analysis of its genome sequence. The isolate, formerly referred to as Pseudoletia (Mythimna) sp. nucleopolyhedrovirus #7 (MyspNPV#7), was determined by barcoding PCR to derive from the host species Mythimna unipuncta (true armyworm) and was renamed Mythimna unipuncta nucleopolyhedrovirus #7 (MyunNPV#7). The occlusion bodies (OBs) and virions exhibited a size and morphology typical for OBs produced by the species of genus Alphabaculovirus, with occlusion-derived virions consisting of 2-5 nucleocapsids within a single envelope. The MyunNPV#7 genome was determined to be 148,482 bp with a 48.58% G+C nucleotide distribution. A total of 159 ORFs of 150 bp or larger were annotated in the genome sequence, including the 38 core genes of family Baculoviridae. The genome contained six homologous repeat regions (hrs) consisting of multiple copies of a 34-bp imperfect palindrome. Phylogenetic inference from concatenated baculovirus core gene amino acid sequence alignments placed MyunNPV#7 with group II alphabaculoviruses isolated from other armyworm and cutworm host species of lepidopteran family Noctuidae. MyunNPV#7 could be distinguished from other viruses in this group on the basis of differences in gene content and order. Pairwise nucleotide distances suggested that MyunNPV#7 represents a distinct species in Alphabaculovirus. The MyunNPV#7 genome was found to contain two copies of the late expression factor-7 (lef-7) gene, a feature not reported for any other baculovirus genome to date. Both copies of lef-7 encoded an F-box domain, which is required for the function of LEF-7 in baculovirus DNA replication.


Assuntos
Genes Virais , Genoma Viral , Lepidópteros/virologia , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Corpos de Inclusão Viral/ultraestrutura , Nucleopoliedrovírus/isolamento & purificação , Nucleopoliedrovírus/ultraestrutura , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Vírion/ultraestrutura
12.
J Gen Virol ; 98(12): 3101-3110, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29134933

RESUMO

Baculoviruses orally infect caterpillars in the form of occlusion-derived viruses (ODVs). The ODV-envelope contains a number of proteins which are essential for oral infectivity, called per os infectivity factors (PIFs). Most of these PIFs are involved in the formation of an ODV-entry complex that consists of a stable core, formed by PIF1, PIF2, PIF3 and PIF4, and the more loosely associated PIFs P74 (PIF0) and P95 (PIF8). PIF1, PIF2 and PIF3 are essential for formation of the stable core, whereas deletion of the pif4 gene results in the formation of a smaller complex. P74 is not needed for formation of the stable core. We show here in larva-derived ODVs of the Autographa californica multicapsid nucleopolyhedrovirus that PIF-proteins are degraded by host-derived proteases after deletion of a single pif-gene. Constituents of the stable core-complex appeared to be more resistant to proteases as part of the complex than as monomer, as in ODVs of a p74 deletion mutant only the stable core was found but no PIF monomers. When the stable core lacks PIF4, it lost its proteolytic resistance as the resulting smaller core complex was degraded in a pif4 deletion mutant. We also identified PIF6 as a loosely associated component of the entry complex that appeared nevertheless important for the proteolytic resistance of the stable core, which was degraded after deletion of pif6. We conclude from these results that an intact entry-complex in the ODV-envelope is prerequisite for proteolytic resistance of PIF-proteins under the alkaline conditions of the larval midgut.

13.
PLoS One ; 12(4): e0176171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426736

RESUMO

During an insect sampling program in alfalfa crops near Montpellier, France in 2011, Lacanobia oleracea larvae were collected that died due to nucleopolyhedrovirus infection (LaolNPV). This virus was subjected to molecular and biological characterization. The virus was a multiple nucleocapsid NPV that showed similar restriction profiles to Mamestra configurata NPV-A (MacoNPV-A) but with significant differences. Polypeptide analysis demonstrated similar proteins in occlusion bodies and occlusion derived virions, to those observed in NPVs from Mamestra spp. Terminal sequencing revealed that the genome organization shared similarity with that of MacoNPV-A. The most homologous virus was MacoNPV-A 90/2 isolate (95.63% identity and 96.47% similarity), followed by MacoNPV-A 90/4 strain (95.37% and 96.26%), MacoNPV-B (89.21% and 93.53%) and M. brassicae MNPV (89.42% and 93.74%). Phylogenetic analysis performed with lef-8, lef-9, polh and a concatenated set of genes showed that LaolNPV and the Mamestra spp. NPVs clustered together with HaMNPV, but with a closer genetic distance to MacoNPV-A strains. The Kimura 2-parameter (K-2-P) distances of the complete genes were greater than 0.05 between LaolNPV and the MbMNPV/MacoNPV-B/HaMNPV complex, which indicates that LaolNPV is a distinct species. K-2-P distances were in the range 0.015-0.050 for comparisons of LaolNPV with MacoNPV-A strains, such that additional biological characteristics should be evaluated to determine species status. While MacoNPV-A was pathogenic to seven lepidopteran species tested, LaolNPV was only pathogenic to Chrysodeixis chalcites. Given these findings, Lacanobia oleracea nucleopolyhedrovirus should be considered as a new species in the Alphabaculovirus genus.


Assuntos
Nucleopoliedrovírus/classificação , Animais , Europa (Continente) , Interações Hospedeiro-Patógeno , Mariposas/virologia , Filogenia
14.
PLoS One ; 12(1): e0170510, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28103323

RESUMO

The betabaculovirus originally called Pseudaletia (Mythimna) sp. granulovirus #8 (MyspGV#8) was examined by electron microscopy, host barcoding PCR, and determination of the nucleotide sequence of its genome. Scanning and transmission electron microscopy revealed that the occlusion bodies of MyspGV#8 possessed the characteristic size range and morphology of betabaculovirus granules. Barcoding PCR using cytochrome oxidase I primers with DNA from the MyspGV#8 collection sample confirmed that it had been isolated from the true armyworm, Mythimna unipuncta (Lepidoptera: Noctuidae) and therefore was renamed MyunGV#8. The MyunGV#8 genome was found to be 144,673 bp in size with a nucleotide distribution of 49.9% G+C, which was significantly smaller and more GC-rich than the genome of Pseudaletia unipuncta granulovirus H (PsunGV-H), another M. unipuncta betabaculovirus. A phylogeny based on concatenated baculovirus core gene amino acid sequence alignments placed MyunGV#8 in clade a of genus Betabaculovirus. Kimura-2-parameter nucleotide distances suggested that MyunGV#8 represents a virus species different and distinct from other species of Betabaculovirus. Among the 153 ORFs annotated in the MyunGV#8 genome, four ORFs appeared to have been obtained from or donated to the alphabaculovirus lineage represented by Leucania separata nucleopolyhedrovirus AH1 (LeseNPV-AH1) during co-infection of Mythimna sp. larvae. A set of 33 ORFs was identified that appears only in other clade a betabaculovirus isolates. This clade a-specific set includes an ORF that encodes a polypeptide sequence containing a CIDE_N domain, which is found in caspase-activated DNAse/DNA fragmentation factor (CAD/DFF) proteins. CAD/DFF proteins are involved in digesting DNA during apoptosis.


Assuntos
Genoma Viral , Granulovirus/genética , Granulovirus/isolamento & purificação , Lepidópteros/virologia , Animais , Sequência de Bases , Código de Barras de DNA Taxonômico , DNA Viral/genética , Granulovirus/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
15.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031365

RESUMO

Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and a new model for AC83 function was proposed. In contrast to previous studies, AC83 was found to be physically located in both the envelope and nucleocapsid of ODV. By deletion analysis, the AC83 domain required for nucleocapsid assembly was more finely delineated. We show that AC83 is required for PIF complex formation and conclude that it is a true per os infectivity factor and should be called PIF8.


Assuntos
Proteínas do Capsídeo/fisiologia , Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/fisiologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Células Sf9 , Spodoptera , Montagem de Vírus , Replicação Viral
16.
J Invertebr Pathol ; 141: 24-33, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27793742

RESUMO

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the type species for the genus Alphabaculovirus in the family Baculoviridae. In nature, AcMNPV infection begins with ingestion of viral occlusion bodies (OBs) from which occlusion-derived viruses (ODV) are released to infect midgut cells. This study explored the early stages of Trichoplusia ni midgut infection using recombinant viruses expressing green fluorescent protein (GFP) and/or a VP39-mCherry fusion protein under the control of early and late promoters, respectively. Using a recombinant ie1:GFP virus, the anterior midgut region was identified as the predominant site for primary infection. Infection of midguts using the GFP-VP39mCherry-dual labelled recombinant virus revealed that active viral replication and cell-to-cell spread was required for the formation of infection foci and the subsequent spread to uninfected midgut cells and tracheoblasts. The spread of the infection from primary infected cells to secondary cells within the midgut was shown to be dependent upon the membrane fusion protein GP64.


Assuntos
Mariposas/virologia , Nucleopoliedrovírus/metabolismo , Viroses/veterinária , Animais , Western Blotting , Sistema Digestório/virologia , Proteínas Virais/metabolismo , Virulência
17.
Virology ; 499: 1-8, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623563

RESUMO

Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, as well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues.


Assuntos
Baculoviridae/genética , Trato Gastrointestinal/virologia , Regulação Viral da Expressão Gênica , Mariposas/virologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Larva/virologia , Fases de Leitura Aberta , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Transcriptoma
18.
J Cell Sci ; 129(15): 2905-11, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27284005

RESUMO

The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin ß superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle.


Assuntos
Actinas/metabolismo , Baculoviridae/metabolismo , Núcleo Celular/metabolismo , Nucleocapsídeo/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Baculoviridae/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Digitonina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HeLa , Humanos , Poro Nuclear/metabolismo , Nucleocapsídeo/efeitos dos fármacos , Nucleopoliedrovírus/efeitos dos fármacos , Nucleopoliedrovírus/metabolismo , Polimerização/efeitos dos fármacos , Quinazolinas/farmacologia , Proteína ran de Ligação ao GTP/metabolismo
19.
J Virol ; 90(8): 3953-3965, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842471

RESUMO

UNLABELLED: Autographa californicamultiple nucleopolyhedrovirus (AcMNPV) is in the familyBaculoviridae, genusAlphabaculovirus AcMNPVme53is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Althoughme53is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE: Baculovirusme53is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as being necessary for optimal budded virus production. Altogether, these results indicate a previously unidentified nuclear role that ME53 plays in virus replication.


Assuntos
DNA Viral , Proteínas de Ligação a DNA/genética , Sinais de Localização Nuclear , Nucleopoliedrovírus/genética , Proteínas Virais/genética , Replicação Viral , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Genes Virais , Mutagênese Sítio-Dirigida , Spodoptera/virologia , Transfecção , Proteínas Virais/metabolismo
20.
J Virol ; 90(7): 3480-95, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763996

RESUMO

UNLABELLED: The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with ß-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE: In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus.


Assuntos
Cinesinas/metabolismo , Mariposas/virologia , Proteínas do Nucleocapsídeo/metabolismo , Nucleopoliedrovírus/metabolismo , Liberação de Vírus/fisiologia , Animais , Linhagem Celular , Cinesinas/genética , Metiltransferases/metabolismo , Microtúbulos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...